GASP! CARDIOPULMONARY PHYSIOLOGY

BASIC ANATOMY

Respiratory tract

GAS EXCHANGE

BASIC PHYSIOLOGY

Cardiopulmonary circulation

BASIC PHYSIOLOGY

Cardiopulmonary circulation

CARDIOPULMONARY CIRCULATION

CARDIOPULMONARY CIRCULATION

Simplified

PRESSURE

RULE 2: ↑CONCENTRATION = ↑PRESSURE

PRESSURE GRADIENTS

Spontaneous Inspiration

CLOSED SYSTEM 7u / 10mL

↑CONCENTRATION = ↑PRESSURE

↑VOLUME =↓CONCENTRATION = ↓PRESSURE

 \uparrow VOLUME \downarrow PRESSURE \rightarrow GAS INFLUX

CLINICALLY APPLICABLE POINTS

- Inflation of lungs during spontaneous inspiration is a passive process
- Positive pressure ventilation (manual or mechanical) may cause trauma to lung tissue

POSITIVE END EXPIRATORY PRESSURE (PEEP)

↓VOLUME = **↑PRESSURE**

NORMAL EXPIRATION (neutral @ 760mmHg)

↓VOLUME = **↑PRESSURE**

PEEP (often set at 1-5mmHg) (increased @ 761-766mmHg)

PARTIAL PRESSURES

CONTAINER

THE TOTAL INTERNAL PRESSURE OF A CONTAINER*
WILL ALWAYS EQUAL THE SUM OF THE INDIVIDUAL
PRESSURES OF THE GASSES WITHIN THAT CONTAINER

Atmospheric Pressure: 760mmHg

GAS CONTENT OF ROOM AIR
GAS NAME

Nitrogen (N₂)

Oxygen (O₂)

Carbon Dioxide (CO₂)

0.08 %

0.9 %

TRACE

CALCULATE THE PO₂:

760mmHg $\times 0.21 = PO_2 159.60$ mmHg

PARTIAL PRESSURE OF O₂ AND CO₂ THROUGHOUT THIS CYCLE

	ATMOSPHERE	ALVEOLI	PULMONARY aRTERY (ARTERIAL CIRCULATION)	PULMONARY VEIN (VENOUS CIRCULATION)
02	PO ₂ =160mmHg	P _A 0 ₂ =103mmHg	PaO ₂ =40mmHg	Pa0 ₂ =100mmHg
CO ₂	CO ₂ =0mmHg	$C_A O_2 = 40 \text{mmHg}$	CaO ₂ =45mmHg	Ca0 ₂ =40mmHg

***** APPROX CONCENTRATIONS

ROOM AIR

^{*}Fraction of Inspired Oxygen (FiO₂) of room air = 0.21

VENTILATION AND OXYGENATION

ARTERIAL BLOOD

CARBON DIOXIDE

- Normocapnea: PCO₂ < 45 (dog), < 38(cat)
- Hypercapnea: > normal
- Severe Hypercapnea: ≥ 50
- Hypocapnea: < 35

OXYGEN

- Normoxemia: PaO₂ ≈100mmHg
- Hypoxemia: PaO₂ <80 mmHg, SPO2 <95%
- Severe Hypoxemia: PaO₂ <60 mmHg, SPO2 <90%
- Hyperoxemia

Saturation SPO2	n and PaO2 PaO ₂
98-99%	100-600 mmHg
99%	120 mmHg
95-96%	80 mmHg
90-91%	60 mmHg

Affected by temperature and pH

OXYGEN AND CARBON DIOXIDE

CLINICAL APPLICATIONS OF CONCEPT

Assessment of ventilation, oxygenation, and lung function

ASSESSMENT OF VENTILATION

ASSESSMENT OF OXYGENATION

HEMOGLOBIN SATURATION (SPO2)

CLINICAL APPLICATION OF CONCEPT

SPO2 WILL NOT FALL BELOW 100% UNTIL PaO² FALLS BELOW 120mmHg

"With these...caveats, pulse oximeters noninvasively, continuously, and automatically monitor very well the parameter they were designed to measure- hypoxia"

SC Haskins, DVM, MS, DACVAA, DACVECC

PULSE OXIMETRY

Saturation and PaO2					
SPO2	PaO ₂				
98-99%	100-600 mmHg				
99%	120 mmHg				
95-96%	80 mmHg				
90-91%	60 mmHg				

Affected by temperature and pH

unknown original source

NOTE ON CYANOSIS

Recognition of cyanosis requires an absolute concentration of deoxygenated hemoglobin of 5g/dl

- 1. If a dog has a hemoglobin concentration of 15g/dl cyanosis would manifest when SPO_2 had decreased to 67% (PaO₂ 37 mmHg)
- 2. An anemic dog with a hemoglobin concentration of 5g/dl would die of hypoxemia and resultant tissue hypoxia long before manifesting cyanosis.

ASSESSMENT OF LUNG FUNCTION

 $A - a Gradient (PAO_2 - PaO_2)$

- Animals breathing room air
- Normal 5-15mmHg

Oxygen Index (PaO_2/FiO_2)

- In cases breathing FiO2 > 21%
- Normal 500

^{*}Fraction of Inspired Oxygen (FiO₂)

Partial Pressure of arterial Oxygen (PaO₂)

HEMOGLOBIN SATURATION (SPO₂)

ABG SAMPLING AND HANDLING

- Ideally as anaerobically as possible
- Ideally run the samples as soon as possible
- Ideally avoid excessive dilution (anticoagulants)

SUGGESTED READING

VARIOUS HELPFUL TABLES

Normal Venous and Arterial Blood Gas Values					
Value	Venous	Arterial			
рН	7.38-7.43	7.35-7.45			
PO ₂	35-40	80-100			
PCO ₂	41-52	35-45			
HCO ₃ -	24-28	22-26			
Saturation	≈75%	> 98%			

ATMOSPHERIC PRESSURE AT ALTITUDE					
City	Altitude	AP			
Charleston, SC (Sea Level)	0 ft	760mmHg			
Cleveland, OH	500 ft	747mmHg			
Denver, CO	5280 ft	640mmHg			
Mt. Everest	29,028 ft	253mmHg			

 $1 \text{ cmH}_2 0 = 0.736 \text{mmHg}$

CASE EXAMPLE

Multiple Choice:

Question: You have successfully obtained an arterial blood gas sample from a Doberman. You are very proud of yourself. Unfortunately you were so excited that you did not notice an air bubble in the syringe. Sonya did notice, but ran

the sample.

Objective: PaO₂ evaluation

Draw time: 2:30pm

Run time: 3:20pm

Will your doctor likely use this sample to evaluate this patients lung function?

- a. Sure thing!
- b. No Way!

Multiple Choice:

Question: You have successfully obtained an arterial blood gas sample from a Doberman. You are very proud of yourself. Unfortunately you were so excited that you did not notice an air bubble in the syringe. Sonya did, but ran the

sample.

Sample type: Arterial blood sample

Objective: PaO₂ evaluation

Draw time: 2:30pm

Run time: 3:20pm

Do you expect the presence of the air bubble to:

- a. Have no effect on the result
- b. Artificially raise the resultant PaO₂ value
- c. Artificially lower the resultant PaO₂ value
- d. It's just not that simple

Multiple Choice:

Question: You have successfully obtained an arterial blood gas sample from the FOLLOWING TWO Doberman dogs.....

Sample type: Arterial blood sample Objective: PaO₂ evaluation

> Draw time: 2:30pm Run time: 3:20pm

PATHOPHYSIOLOGY

PROGRESSIVE SYSTOLIC DYSFUNCTION & CARDIAC DILATION

DECREASED FORWARD FLOW

CHRONIC RENIN ANGIOTENSIN ALDOSTERONE SYSTEM ACTIVATION

RETENTION OF SODIUM AND WATER

CONGESTIVE HEART FAILURE (PULMONARY EDEMA)

DECREASED O2 DELIVERY TO THE TISSUES

 $CaO_2 = (1.34 \times Hgb \times SaO_2) + (0.003 \times PaO_2)$

DELIVERY OF OXYGEN (DO₂)

WHAT DID WE DO TO HELP HIM?

CARDIAC DILATION & PROGRESSIVE SYSTOLIC DYSFUNCTION

DECREASED FORWARD FLOW

CHRONIC RENIN ANGIOTENSIN ALDOSTERONE SYSTEM ACTIVATION

RETENTION OF SODIUM AND WATER

CONGESTIVE HEART FAILURE

DECREASED O2 DELIVERY TO THE TISSUES

Other pharm support